Slow growth rates of Amazonian trees: consequences for carbon cycling.
نویسندگان
چکیده
Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only approximately 1 mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests.
منابع مشابه
Liana infestation impacts tree growth in a lowland tropical moist forest
Ecosystem-level estimates of the effect of lianas on tree growth in mature tropical forests are needed to evaluate the functional impact of lianas and their potential to affect the ability of tropical forests to sequester carbon, but these are currently lacking. Using data collected on tree growth rates, local growing conditions and liana competition in five permanent sampling plots in Amazonia...
متن کاملIncreasing biomass in Amazonian forest plots.
A previous study by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink. However, these results generated a vigorous debate about sampling and methodological issues. Therefore we present a new analysis of biomass change in old-growth Amazonian forest plots using updated inventory data. We find that acr...
متن کاملThe changing Amazon forest
Long-term monitoring of distributed, multiple plots is the key to quantify macroecological patterns and changes. Here we examine the evidence for concerted changes in the structure, dynamics and composition of old-growth Amazonian forests in the late twentieth century. In the 1980s and 1990s, mature forests gained biomass and underwent accelerated growth and dynamics, all consistent with a wide...
متن کاملNet mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2]
Elevated atmospheric carbon dioxide concentrations [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. This study contributes to our broad goal of understanding the causes and consequences of increased fine-root production and mortality under elevated [CO2] by examining potential gross nitrogen (N) cycling rates throughout the soil profile. Our s...
متن کاملRapid decay of tree-community composition in Amazonian forest fragments.
Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 51 شماره
صفحات -
تاریخ انتشار 2005